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by  any  slight shifts of neighbouring oxygen atoms, 
to make  the coordination polyhedron contracted so as 
to fi t  a calcium atom. This s i tuat ion m a y  be re levant  
to the difference in the amoun t  of alkali  contents in 
these minerals,  namely  phillipsite contains two alkali  
a toms per unit  cell, while ha rmotome only one a tom 
or less. Thus, the a r rangement  of meta l  a toms and 
water  molecules in phillipsite is probably  considerably 
different from tha t  in harmotome.  In  fact,  the results 
of our pre l iminary  investigation into the s t ructure  of 
phillipsite seem to suggest t h a t  its alumino-si l icate 
f ramework  m a y  take  a configuration somewhat  dif- 
ferent  from the one in harmotome,  though we still 
believe t h a t  these two are essentially of identical 
s t ruc tura l  scheme. 
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The effect of off-diagonal terms of the normal equations of least-squares on the refinement of 
parameters (both positional and thermal) is discussed critically. I t  is shown that  the usual procedure 
of neglecting the off-diagonal terms during refinement of positional parameters in a three-dimen- 
sional structure, or in a projection without overlap of atoms, is valid only if the structure or the 
projection concerned is centrosymmetric and the axes are orthogonal. If  the structure is non- 
centrosymmetric and contains atoms or groups of atoms which are centrosymmetric and which 
contribute predominantly to the structure factor, then a new type of overlap termed 'inverse 
overlap' has to be taken into account. The inverse overlap is particularly significant since it can 
occur in three dimensions. Finally it is shown that  in the refinement of thermal parameters the 
linear approximation formula is not valid and all the off-diagonal terms involving the Bij's which 
occur for the particular symmetry have to be included in the refinement. 

1. Introduct ion  

Since it was first suggested by  Hughes (1941), the  
method  of least-squares has been widely used in 
crys ta l -s t ructure  analysis.  However,  no critical ex- 
aminat ion  of the method,  par t icular ly  the effect of 
off-diagonal terms,  as applied to the s t ruc tura l  refine- 
ment  seems to be available in the l i terature.  Such a 
s tudy  was under taken  by  the au thor  and the results 
obtained are presented in this paper.  

The usual  procedure of neglecting the  off-diagonal 
te rms in the  ref inement  of three-dimensional  struc- 
tures, and  in two dimensional projections wi thout  
overlap, a l though justifiable in centrosymmetr ic  struc- 
tures,  is not  valid for non-cent rosymmetr ic  s t ructures  
containing a toms or groups which are centrosym- 
metric and  which contr ibute  p redominant ly  to the 
s t ructure  factor.  Under  these conditions it is necessary 
to t ake  into account  wha t  m a y  be te rmed the ' inverse 
overlap'  of atoms. The l inear-approximat ion formula  
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is also found not to be valid when applied to the 
refinement of anisotropic thermal parameters. 

2. Effect of of f -d iagonal  t e r m s  

First,  let us assume that  only positional parameters 
are refined. Also, for convenience, we shall consider 
only a two-dimensional case (say the projection down 
the c axis). The extension of the results to three 
dimensions is quite straightforward. 

The normal equation for the shift /Ix~ in the x 
co-ordinate of an atom i can be written in the form 

~(~[F~I~ e ~IF~f ~IF~I 
~,~ 8x~ ~, ~ 8x~ 8y~ 

{OIF~IOIF~I DIF~I~F¢ } 
+ ~, ~, A x e + - -  Ay~ , (1) 

~,~ ~.~ ~x~ c~x~ ~x~ ~y~ 

where AF=(IFo]-]F~[). In  this equation the off- 
diagonal terms can, in general, be divided into two 
categories. The first consists of interactions of an atom 
with itself, namely of the type (~[Fc[/~x~). (~[Fc!/~y~); 
we shall denote such a term by [X~ Y~]. The second 
group of terms involves interactions of different atoms, 
of the type [X~XI] and [X~ Y¢]. I t  is usual to assume 
that  all interactions excepting the diagonal one, 
namely [X~X~], are negligible so tha t  the determina- 
tion of the shift A x~ of an atom reduces to a single 
linear equation 

Ax~ = ~' ~ ~x~ 

h,k 

The conditions under which this holds good are usually 
taken to be the following. 

(1) If the axes are orthogonal or nearly so the 
contribution due to [X~ Y~] may be neglected. 

(2) The interactions of the type [X~X¢] and [X~ Y~] 
may be neglected in all three-dimensional work and 
also in two-dimensional projections if there is no 
overlap of atoms. These points will now be examined 
more closely. 

(i) Centrosymmetric case 
When the structure is centrosymmetric we can 

write 
Fc = ~ f ~  cos 2~ (hx~ + kyi) = .,~fl cos 0~. (3) 

i i 

Consider first the interaction between the different 
co-ordinates of the same atom, i.e., of the type [Xt Y~], 
which is given by 

[X~ Yi] = ~ ~Fc ~F~ _ ~Y, 4 ~  fi~hk sin 2 0~ (4) 

= .~ 2~2ft2hk-  Z 2~2fi2hk cos 20~. (5) 
h,k h,k 

When 0~ goes through a range greater than 2~ for 

different values of h, k we have to consider the follow- 
ing three cases: 

(I) The symmetry is orthogonal, which would result 
in (0i)h~ = (0~)~k. 

(II) Axes are orthogonal, but  the symmetry  is not. 
This would give only a relation of the type (fi)hk= 
(fi)~k. 

(III) Both symmetry  and axes are non-orthogonal. 
For case (I), it is possible to group properly terms 

of the type (cos 20i)h~ and (cos 20i)ik so tha t  the first 
and second terms in (5) vanish identically. Hence all 
the non-diagonal terms [X,Y,] vanish. For case (II), 
the second term in (5) becomes negligible since 
cos 20~ is an oscillatory function. Regarding the first 
term, since (fi)hk=(fi)7,k a proper grouping of the 
terms will make it vanish so tha t  in this case also the 
non-diagonal terms [Xi Y~] become negligible although 
they are not identically zero as in case (I). For case 
(III), it can be shown that  (5) is not negligible. Firs t ly  
(fi)hk# (fi)7,k because of the non-orthogonality of the 
axes. Therefore the grouping of the terms as devised 
earlier cannot be adopted. However, neglecting for 
the present the above factor (fi)2, the non-vanishing 
of the sum of the product terms hk, -hk can be under- 
stood by reference to Fig. 1 which represents the 
situation in a two-dimensional reciprocal lattice. The 
circle represents the limiting sphere and the axes a* 
and b* are non-orthogonal with an included angle 7* 
( #  90°). I t  is clear from the diagram tha t  the number 
of product terms of the type hk, ~k which have posi- 
tive values is much less than the number of terms of 
the type ~k, hk, which have negative values. Therefore 
the sum (5) will not vanish. I t  is also obvious tha t  the 
positive and negative terms become nearly equal in 
number when 7"_~ 90 ° so tha t  the sum (5) becomes 
negligible (i.e., it tends to case (II) discussed above). 

b" 

i .............. i i ill • 

Fig. 1. Two-dimensional  reciprocal la t t ice wi th  non-or thogonal  
axes. The circle represents  the  l imiting sphere of reflection. 

Before considering the interaction between different 
atoms it is necessary to consider one other possible 
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case for (5), namely  when the  a tom lies close to the  
origin, so t h a t  0, will not  be dis t r ibuted over a range 
of 2~  for different values of h and k. Here  again we 
can consider the  three cases (I), (II)  and  (III) .  

For  case (I), obviously the sum (5) is zero. For  
case (II) it is seen t h a t  the  first t e rm in (5) is zero 
because of (f,)~,~= (f,)i~ bu t  the second te rm will not  
vanish. For, by grouping terms of the  type  hk, hk and  
hk, hk the second term in (5) can be wri t ten as 

(x) oo 

- 2,  2,4~2(f,)ehk [cos 2~(2hx,+2ky,) 
h = l  k = l  

-- cos 2~ (2hx~ - 2ky~)] 

= 2 ,  2 ,  8a2f,~ sin 27~. 2hx, sin 2~r. 2ky, .  
h = l  k = l  

(6) 

(7) 

Suppose H and K are the  largest  values of h and k 
occurring in the  summation.  Then if neither ]2Hxil 
nor ]2Kyi] is greater  t h a n  ½, the  two sine functions 
do not  change sign throughout  the  interval  and  so 
this sum cannot  vanish. This condition for non- 
vanishing of the  sum can be pu t  in the  form x, < ¼H, 
yi < ¼K or more generally, if s is the  reciprocal vector  
and  r ,  the  position vector  of the  a tom,  s . r , < ¼  or 
r ,  < ;t/4. This means t ha t  in a centrosymmetr ic  struc- 
ture  if an a tom occurs a t  a distance less t han  ;t/4 from 
the  origin, the sum (5) is non-negligible. Physical ly  
this is plausible because the  a tom i will then  overlap 
with its inverse (i'). Obviously the  min imum separa- 
t ion of i and i '  for non-vanishing of (5) becomes 
I r , - r~ I  < )./2. This condition is exact ly  the  same as 
the  condition for the  resolution of the two a toms 
i and i '  and  is similar to the  more general result  to 
be obtained below for the  case of two different atoms. 

Case ( I I I )  need not  be discussed separate ly  here 
since the  non-diagonal  te rms have  to be included 
even when the  a tom is in a general position. 

Let  us now consider the  interact ion between dif- 
ferent  atoms. The two types  of interactions can be 
wri t ten  

[X,Xj] = 2,  2~h2fif~ [cos ( 0 , -  0~) - cos (0, + 0j)] (8) 
and h, k 

[Xt Yj] = 2 ,  2~2hkf~fj [cos (0~- 0j) -- cos (0~ + 0~)]. (9) 
h,k  

Taking first equat ion (8), since only h 2 which is a lways 
positive appears  in the  summat ion,  the  following 

discussion will hold good for all the  three cases (I), 
(II),  and (III) .  

The sum (8) will have  a large value when either 
(01-03) or (0i + 03) ~ 0 for various values of h, k. Now, 
( 0 , -  03) = 2 ~ s .  ( r , -  rj) and (0, + 0j) = 2 ~ s .  (r,  + r3). So 
the sum will be large if r i _ r y  or if r , _~- - ry .  This 
means t h a t  if an a tom i overlaps another  a tom j or 
its inverse (j'), then  the  corresponding co-ordinates 
have to be t aken  together  in the refinement.  I n  a 
centrosymmetr ic  crystal  the two conditions r ,  _ rj  and  
r ,  ~ - r j  are equivalent  and so it is enough to consider 
one of them,  say  the former. Hence using an a rgument  
similar to t h a t  used for [X,Y,], it is seen t h a t  for the  
non-vanishing of (8), ( r , - r j )  should be less t h a n  ;t/2. 
Thus if two a toms i and  j are separa ted  by  a distance 
greater  t han  2/2 their  interactions m a y  be neglected. 

I t  is seen t h a t  sum (9) is similar to (5) and if 0, = 0j, 
it is identically the  same as (5), as obviously it should 
be. In  fact, the  discussions pertaining to (5) hold here 
pract ical ly always with slight modifications and  the  
results will be s ta ted  wi thout  detailing the  proofs. 
For  case (I), (9) vanishes whether  the a toms i and  j 
overlap or not. For  case (II), however,  (9) becomes 
negligible provided the  two atoms are well resolved; 
otherwise these terms have  to be included. Last ly,  
for case (III) ,  it  will be clear t h a t  (9) will a lways be 
large since it has been shown to be so even if the  
a toms do not  overlap. 

In  the  case of non-centrosymmetr io  s t ructures  a 
fur ther  condition arises. 

(ii) Non-centrosymmetric case 
For  a non-cent rosymmetr ic  projection it is easy to 

show t h a t  

0IF~I I (A ~A ~B) (10) 
~x, -IFcl 7x, + B ~  . 

Making use of the  relations, 

IFcl cos ~ = A ,  IFol sin~x=B, [FoIe=A2+B 2, (11) 

we get 

Ox~ - - c ° s a  ~ +s in~x  ~ . (12) 

Taking first the  interactions between the  different 
co-ordinates of the same atom,  we get the following 
equat ion af ter  some manipula t ion:  

Table 1. Terms to be included in the normal equations of least-squares under various situations 
in a two dimensional case 

Description 

(i) Symmetry orthogonal 
(ii) Axes orthogonal 

(iii) Both non-orthogonal 

Situations (B) and (D) do not arise in a three dimensional case 

(B) Overlap 
(A) No overlap (both centric and (C) Inverse overlap 

(both centric and non-centric) (non-centric) 
non-centric) 0i ~-- 01 0i ~-- 2a-- 0j 

[XiXi] [XiXi] [XiX t] Same types 
[Xi Xi] [Xt Xi] [Xi X 1] [Xt YI] as for (B) 

[X~ X f  [X~ Y3] 

(D) Inverse overlap 
(centric) 
0~,~0 

Same as for (C) 
excepting that, now, 

j=i" 
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[Xi Y~] = ~ • - ~7 4~2hlcf~ 2 sin~ (0i - c~). 
h,e Oxi ~yi h,k 

(13) 

This is identical with (4) excepting that  ( 0 i - a )  
replaces 0i. In fact, all the other expressions below 
for the non-centrosymmetric case can be obtained by 
replacing 0f in the corresponding formulae for the 
centrosymmetric case by (0 i -a ) .  The detailed deriva- 
tions are omitted. 

I t  is clear from the nature of the expression (13) 
that  the results obtained while discussing (5) should 
hold good here also. However, the overlap of an atom 
with its inverse does not arise here. On the other hand 
a slightly different form of overlap between different 
atoms arises in the non-centrosymmetric case as will 
be shown below. 

Considering the [XiXj] interaction, we have, 

x (cos (0 i -  0~) - cos (0~ + 0~- 2a)}. (14) 

This expression with ~ = 0 or ~r agrees with equation 
(8) of the centrosymmetric case as obviously it should. 
Now the above sum (14) will be large if, for various 
values of h, k, 

(a) (0~- 0~) _ 0 ,  
(b) (0i+0~) ~2c¢. 

with another atom j which may be accidentally related 
to it by inversion at the centre of symmetry of the 
heavy atoms (or the centrosymmetric group) will have 
to be taken into account. By analogy with the usual 
notion of 'overlap' the above situation may be called 
the 'inverse overlap'. 

The interaction of the type [Xi Yy] does not require 
special treatment. I t  is in fact similar to the corre- 
sponding type in the centrosymmetric case (equation 
(9)), the only difference being that  we have to con- 
sider the possible inverse overlaps along with the usual 
ordinary overlap. 

3. Refinement of thermal  parameters  

These results pertain only to the refinement of the 
positional parameters. Strictly speaking each atom has 
also six thermal parameters, which correspond to the 
possible ani'sotropic vibration of an atom, in the most 
general case of a triclinic crystal. We shall, however, 
consider a case where the anisotropic thermal param- 
eters are applied to the whole structure factor, which 
would occur when all the atoms have identically the 
same thermal parameters. This assumption is purely 
for convenience of mathematical manipulations and 
it will be obvious that  the discussion to be given below 
will be equally applicable for the refinement of the 
thermal parameters of individual atoms. 

Now we can write 

The first condition leads to the ease of overlap between 
atoms i and j discussed already in connection with 
the centrosymmetric case. The second condition shows 
that  when (0i+0~)_~2c¢ each term in (14) will have 
a large value and hence the sum will also be large. 
In general, a will be highly variable (0 to 2~) so that 
the condition (0i+ 0j)_ 2~ will be satisfied only very 
rarely for certain reflections. 

But suppose the structure contains a group of heavy 
atoms which is centrosymmetric, though the structure 
as a whole is non-centrosymmetric. Suppose also that  
the origin is chosen at the point of inversion of the 
centrosymmetric group. The majority of reflections 
will have their phases (~) close to 0 or ~, depending 
on all. Hence for these reflections 2~ __ 0. The second 
condition, (0i+0~) ~_2a, now reduces to (0~+0j) ~_0. 
This could now be satisfied for all these reflections 
provided that  an atom i is related to another atom j 
by the relation 0~_~-0j. Consequently, the second 
term in (14) will have a large value. The condition 
0~ _~ - 0j is equivalent to saying that  the atoms i and j 
are related to each other by an inversion at the centre 
of symmetry of the centrosymmetric group. 

Although we have proved this result taking the 
origin at the centre of inversion of the heavy atoms, 
it is true whatever be the choice of the origin. Thus, 
during the refinement of an atom i in a structure 
containing heavy atoms, or group of atoms which are 
centrosymmetric, though the structure as a whole is 
non-centrosymmetric, the interaction of the atom i 

Fc(hkl) = Fc' (hkl) exp - [Bllh 2 + B2Jc2 + B8312 ] 

+ 2B12hk + 2B23kl+ 2B13hl] ( ,  (15) 

F ' -  I c - ~y,f:o exp 2~i(hxj + ky: + ly:) ,  
J 

where Bll, B19, etc., denote the overall anisotropic 
thermal parameters and fj0 corresponds to the scat- 
tering factor without application of the temperature 
factor. The initial values of B~I, B12, etc., can be found 
from the usual isotropic temperature factor by the 
relation 

Bij = ¼Ba~*. aj*, (16) 

where ai* (i=1 to 3) are the reciprocal vectors. We 
have to include now the refinement of these parameters 
Bij also in the normal equations (1). For convenience, 
let X denote any positional parameter, and T denote 
any thermal parameter. The normal equations for the 
positional parameters will contain [XX] and [XT] 
types of interactions while those for thermal param- 
eters will contain [TX] and [TT] types. Of these, 
the [XX]  type has already been considered in section 2. 

Consider now an [XT] type of interaction. We get 
from (15) 

~Fc ~Fc 
- h 2 F ~ , - - = - h k F ~  etc. (17) 

Hence for a typical [XT] interaction we have 

~Fc ~F~ _ ~y, 2~h3fiF~ sin 0i, (18) 
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where the suffix s denotes summation over all reflec- 
tions hkl. Now sin 0i, h a and Fc can all be as often 
positive as negative and therefore the sum (18) will, 
in general, be negligible. The result will be found to 
hold good for any type of [XT] interaction. The above 
result shows that the refinement of positional and thermal 
parameters can be treated independently. 

Considering now the thermal parameters alone we 
may write the normal equations as 

s p,q 

( i , j , p , q - l  t o 3 ; j > i , q > p ) .  (19) 

The terms in (19) fall under three categories which 
are of the types 

( ~Fo~ ~ 
[BllBll] = s "~" \ ~ /  = "~' h4Fce (20) 

8 

[B~IB2~] = --'~ \-~-B-~/ \~-~22] = ~ h2k2F~2 (21) 
8 

[B11Bxs] = ~ 2 \ ~B~] \ ~ ]  = "~' hlhg"Fce" (22) 

Since all the quantities, h 2, k 2 and F~ ~ occurring in 
(21) are positive the sum (21) is comparable in mag- 
nitude to the term [BIiB~] given by (20). On the other 
hand, in (22), the term hl occurs which can take both 
positive and negative values. I t  will be obvious tha t  
if the a and c axes are not orthogonal, then the sum 
(22) will not be negligible (see case (III) under equa- 
tion (5)). A similar result also holds for other cross 
terms of the type (22), namely tha t  they are not 
negligible if the corresponding axes are non-orthogonal. 

Even if the axes a and c are orthogonal, but  the 
symmetry  is not, the sum (22) is not negligible since 
the only equality for the structure factors is 
IF~(hkl)l~'= IFc(~ki)l~ for both of which hl is the same 
and no cancellation occurs. However, if the symmetry  
is orthogonal we may  adopt the method described in 
section 2 of grouping terms of the type hl and hi 
(for a fixed k) and the sum (22) will then be seen to 
vanish. Obviously the term B~a itself does not exist. 
From this it  will be clear that ,  for a triclinic crystal, 
the refinement of the six possible thermal parameters 

Table 2. Terms to be included in the refinement of 
anisotropic thermal parameters for different symmetries 

System Types of terms 

Trielinie [Bi~ BI: ] and  [Bi~ Bjk  ] 
iVIonoelinie [BiiB11 ] and [BiiBla ] (b axis unique) 
Orthorhombic  [B~ B11 ] 
Higher  symmetr ies  Same as or thorhombie,  bu t  equalities 

like Bl l=B22  etc., to be noted  

consists in solving the six simultaneous equations (19). 
In the monoclinic system the number of equations 
reduces to four while in orthogonal systems there will 
be a maximum of three. All the non-vanishing param- 
eters which have to be refined together are listed in 
Table 2. 

4. D i s c u s s i o n  

The various results obtained for the refinement of 
positional parameters are summarized in Table 1. 
In general, the problems in a non-centrosymmetric 
structure are very similar to those ia a centro- 
symmetric structure and Table 1 can be used for both. 
They may  be classified as follows. 

(a) All the atoms are well resolved. 
(b) Atoms, say i and j overlap. 
(c) Atom i overlaps with its inverse i '  (centro- 

symmetric projection). 
(d) Atom i is related to another atom j by 0~ _~ - 0 j  

(non-centrosymmetric case). 

The situation (a) is common to both three and two 
dimensions. However, the overlap of atoms (b) does 
not arise in three dimensions, because the minimum 
separation required for resolution, which has been 
shown to be ~/2, is much less than the usual inter- 
atomic distances. But  in two-dimensional projections 
overlap of atoms can occur. Situation (c), obviously, 
can arise only in a two-dimensional centrosymmetric 
case. However, the last one, (d), can occur both in 
three dimensions and in a two-dimensional projection 
of a non-centrosymmetric structure. Its occurrence in 
three dimensions is important  because inverse overlap 
can occur. 

I t  is clear that ,  even if a structure does not contain 
heavy atoms, if it contains a centrosymmetric group 
of atoms which contributes predominantly to the 
structure factor, the above discussions will still apply. 
Such cases are likely to occur in structures of com- 
pounds which contain a benzene ring and other types 
of highly symmetrical molecules and crystallize in 
non-centrosymmetric space groups. 

As regards the refinement of thermal parameters it  
is clear from the last section tha t  the linear approx- 
imation formula (2) does not hold good and all the 
terms like [BllB22] and [BllB28] have to be included 
in solving the normal equations of refinement of these 
parameters. 

My sincere thanks are due to Prof. G. N. Rama- 
ehandran for helpful criticisms and valuable sug- 
gestions. 
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